Postischemic oxidative stress promotes mitochondrial metabolic failure in neurons and astrocytes.

نویسندگان

  • Gary Fiskum
  • Camelia A Danilov
  • Zara Mehrabian
  • Linda L Bambrick
  • Tibor Kristian
  • Mary C McKenna
  • Irene Hopkins
  • E M Richards
  • Robert E Rosenthal
چکیده

Oxidative stress and mitochondrial dysfunction have been closely associated in many subcellular, cellular, animal, and human studies of both acute brain injury and neurodegenerative diseases. Our animal models of brain injury caused by cardiac arrest illustrate this relationship and demonstrate that both oxidative molecular modifications and mitochondrial metabolic impairment are exacerbated by reoxygenation of the brain using 100% ventilatory O(2) compared to lower levels that maintain normoxemia. Numerous molecular mechanisms may be responsible for mitochondrial dysfunction caused by oxidative stress, including oxidation and inactivation of mitochondrial proteins, promotion of the mitochondrial membrane permeability transition, and consumption of metabolic cofactors and intermediates, for example, NAD(H). Moreover, the relative contribution of these mechanisms to cell injury and death is likely different among different types of brain cells, for example, neurons and astrocytes. In order to better understand these oxidative stress mechanisms and their relevance to neurologic disorders, we have undertaken studies with primary cultures of astrocytes and neurons exposed to O(2) and glucose deprivation and reoxygenation and compared the results of these studies to those using a rat model of neonatal asphyxic brain injury. These results support the hypothesis that release and or consumption of mitochondrial NAD(H) is at least partially responsible for respiratory inhibition, particularly in neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neurobiology of Disease -Amyloid Peptides Induce Mitochondrial Dysfunction and Oxidative Stress in Astrocytes and Death of Neurons through Activation of NADPH Oxidase

-Amyloid ( A) peptide is strongly implicated in the neurodegeneration underlying Alzheimer’s disease, but the mechanisms of neurotoxicity remain controversial. This study establishes a central role for oxidative stress by the activation of NADPH oxidase in astrocytes as the cause of A-induced neuronal death. A causes a loss of mitochondrial potential in astrocytes but not in neurons. The mitoch...

متن کامل

ets-2 promotes the activation of a mitochondrial death pathway in Down's syndrome neurons.

Down's syndrome (DS) is characterized by mental retardation and development of Alzheimer's disease (AD). Oxidative stress and mitochondrial dysfunction are both related to neurodegeneration in DS. Several genes in chromosome 21 have been linked to neuronal death, including the transcription factor ets-2. Cortical cultures derived from normal and DS fetal brains were used to study the role of et...

متن کامل

Mitochondria-Targeted Catalase Reverts the Neurotoxicity of hSOD1G93A Astrocytes without Extending the Survival of ALS-Linked Mutant hSOD1 Mice

Dominant mutations in the Cu/Zn-superoxide dismutase (SOD1) cause familial forms of amyotrophic lateral sclerosis (ALS), a fatal disorder characterized by the progressive loss of motor neurons. The molecular mechanism underlying the toxic gain-of-function of mutant hSOD1s remains uncertain. Several lines of evidence suggest that toxicity to motor neurons requires damage to non-neuronal cells. I...

متن کامل

Mitochondrial dysfunction, metabolic deficits, and increased oxidative stress in Huntington's disease.

Huntington's disease (HD) is an autosomal dominant, progressive neurodegenerative disorder, characterized by an array of different psychiatric manifestations, cognitive decline and choreiform movements. The underlying molecular genetic defect is an expanded trinucleotide (CAG)n repeat encoding a polyglutamine stretch in the N-terminus of the huntingtin protein. The mechanisms by which mutant hu...

متن کامل

Oxidative stress-induced apoptosis in neurons correlates with mitochondrial DNA base excision repair pathway imbalance

Neurodegeneration can occur as a result of endogenous oxidative stress. Primary cerebellar granule cells were used in this study to determine if mitochondrial DNA (mtDNA) repair deficiencies correlate with oxidative stress-induced apoptosis in neuronal cells. Granule cells exhibited a significantly higher intracellular oxidative state compared with primary astrocytes as well as increases in red...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annals of the New York Academy of Sciences

دوره 1147  شماره 

صفحات  -

تاریخ انتشار 2008